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Abstract. The representations of the oscillator algebra introduced by Brzeziński et al
(Brzezínski T, Egusquiza J L and Macfarlane A J 1993Phys. Lett.311B 202) are classified.

1. Introduction

In this paper we present an exhausitive discussion of the representations of the deformed
oscillator algebra introduced in [1]. This algebra was obtained as aq-deformation of the
Heisenberg algebra endowed with the Klein reflection operator (actually, it depends on two
parameters,q andα; the caseq = 1 will be referred to as the undeformed one, irrespective
of the value ofα). The undeformed version of the algebra appeared for the first time
in [2, 3]; it can be viewed [4] as a special case of generalized oscillator algebras depending
on arbitrary function [5] (cf also [6]) once the Klein operator is realized in terms of the
creation–annihilation operators [7].

Plyushchay [4] has noted that such an algebra can be applied to the construction of the
representation of the universal covering of theSL(2, R) group and, consequently, to the
construction of the free field equations in 2+ 1 dimensions; it can also be used to bosonize
the supersymmetric quantum mechanics.

The generalized version of the above algebra appeared to provide the algebraic structure
underlying the complete integrability of quantum-mechanicalN -body Calogero model [8–
10] and turned out to be useful in establishing the link between the Knizhnik–Zamolodchikov
equations and the Calogero model [11]. Similar structures appear in Turbiner’s paper [12]
that also concern exact intergrability of the Calogero model. Subsequently, further
applications have been found including, for example, new realizations of the Virasoro algebra
and a new class of theW∞-type algebras containing higher-spin currents together with the
Virasoro generators [13].

The q-deformation of the simplest version of the Calogero–Vasiliev algebra was
introduced in [1] (see also [14]).

In most of the above papers the Fock-type representations of the (deformed) Calogero–
Vasiliev algebra were studied (see, for example, [15] where Schwinger’s method is used).
However, it is known [16] that theq-deformed oscillator algebra posses some exotic
representations which disappear in the limitq → 1. Therefore, it is expected that the same
phenomenon occurs for the algebra considered by Brzeziński et al. Following the methods
used in [16] we show that this is indeed the case, and provide the complete classification of
its representations. In particular, we show that, apart from the Fock representations there
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exist four further types which, however, (with one exception) do not survive theq → 1
limit.

2. Construction of representations

The algebra under consideration reads

aa+ − qa+a = q−N(1+ 2αK)

[N, a] = −a [N, a+] = a+

{K, a} = 0 {K, a+} = 0

[N,K] = 0

N+ = N K+ = K

(1)

whereq ∈ R+, α ∈ R− {0}. This algebra possesses the following Casimir operators:

C1 = K2 C2 = KeiπN C3 = e2iπN . (2)

Obviously, they are not independent:

C1C3 = C2
2. (3)

We will be looking for irreducible representations. Letγ be an eigenvalue ofC2

corresponding to a given representation; then

K = γe−iπN . (4)

Let 90 be a common eigenvector ofN andK:

N90 = ν090

K90 = γe−iπν090.
(5)

Due to the commutativity ofa+a andaa+ with N andK we may assume that

a+a90 = λ090

aa+90 = µ090

(6)

and(90, 90) = 1. It is easy to see that the vectors8n defined by

8n =

(
a+
)n
90 for n > 0

a−n90 for n < 0

are eigenvectors ofa+a andaa+:

a+a8n = λn8n

aa+8n = µn8n.
(7)

Now, let us define the following vectors:

9n =



1√∏n
k=1 λk

(
a+
)n
90 for n > 0

1√∏−n
k=1 λn+k

a−n90 for n < 0.

(8)
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They are orthogonal (as eigenvectors ofN corresponding to different eigenvalues) and
normalized. The action of the basic operators is given by

a+9n =
√
λn+19n+1

a9n =
√
λn9n−1

N9n = (ν0+ n)9n

K9 = (−1)n

2α
B9n

(9)

where, for later convenience, we have defined

B = 2αγe−iπν0 ∈ R. (10)

The only additional condition we have to take into account is thatλn and µn,
being eigenvalues of non-negative operators, should be non-negative. Using the basic
commutation rules applied to9n we obtain

µn − qλn = −q−(n+ν0)
(
1+ 2αγe−iπ(n+ν0)

)
. (11)

However,a
(
a+a

)
9n =

(
aa+

)
a9n which gives

λn = µn−1. (12)

Equations (11) and (12) imply the following recurrence relation:

λn+1 = qλn + q−ν0−n (1+ (−1)nB
)

(13)

which can be explicitly solved to yield

λn = λ0q
n + q−ν0

(
qn − q−n
q − q−1

+ B q
n − (−1)nq−n

q + q−1

)
. (14)

Non-negativity ofλn implies

λ0q
ν0 + 1

q − q−1
+ B

q + q−1
> q−4k

(
1

q − q−1
+ B

q + q−1

)
(15a)

λ0q
ν0 + 1

q − q−1
+ B

q + q−1
> q−(4k+2)

(
1

q − q−1
− B

q + q−1

)
. (15b)

We have now to distinguish several cases.

(i) Assumeq > 1. Then at least one of the numbers

1

q − q−1
± B

q + q−1

is positive. Therefore, there existsn0 such that for even and/or oddn < n0, λn < 0, which
implies a9n = 0 for somen 6 n0. After possible renumbering we may assume

a90 = 0 λ0 = 0. (16)

Therefore, the representation is spanned by the vectors9n, n > 0, andλn are given by

λn = q−ν0+n
(

1− q−2n

q − q−1
+ B 1− (−1)nq−2n

q + q−1

)
. (17)

The conditionλ > 0 gives the following restriction on the possible values ofB:

B > −1. (18)
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However,B = −1 must be considered separately. In this caseλ1 = 0, i.e.µ0 = 0 which,
together withλ0 = 0 and irreducibility implies

a = a+ = 0 N = ν0 K = − 1

2α
. (19)

This representation is one dimensional. ForB > −1 the representation is spanned by the
vectors{9n}∞n=0. We shall call it the Fock representation for obvious reasons. It is given
by equations (9) and (17) withn > 0.

(ii) q < 1 and one (and only one) of the values

1

q − q−1
± B

q + q−1

is positive. In this case there existsn0 such that forn > n0 λn is negative for even or odd
n. This impliesa+9n = 0 for somen > n0. After possible renumbering we get

a+90 = 0. (20)

In order to find the restrictions on possible values ofB we note that the condition (20)
impliesµ0, i.e. λ1 = 0 or

λ0 = −q−ν0−1(1+ B) (21)

which givesB 6 −1. ForB = −1 we obtain the one-dimensional representation (19). If
B < −1 we have to consider the restrictions onB following from the formula

λn = qn−ν0

(
−q−1(1+ B)+ 1− q−2n

q − q−1
+ B 1− (−1)nq−2n

q + q−1

)
. (22)

The conditionλn > 0 implies

B 6 q + q−1

q − q−1
.

For

B <
q + q−1

q − q−1
(23)

we haveλn > 0 and the representation is given by equations (9) and (22) withn 6 0. We
call this representation the anti-Fock one. For

B = q + q−1

q − q−1
(24)

all λn with odd n are zero. Therefore the representation is two dimensional and given by

a90 =
√

2q−ν0

q−1− q9−1 a+90 = 0

a+9−1 =
√

2q−ν0

q−1− q90 a9−1 = 0

N90 = ν090 N9−1 = (ν0− 1)9−1

K90 = q + q−1

2α
(
q − q−1

) K9−1 = q + q−1

2α
(
q − q−1

)9−1.

(25)
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(iii) q < 1 and both values
1

q − q−1
± B

q + q−1

are non-positive (at least one must be strictly negative). There are now the following
possibilities:

(a) λ0q
ν0 + 1

q − q−1
+ B

q + q−1
< 0. (26)

Then there existsn0 such thatλn < 0 for n < n0, n even or odd. Therefore the representation
is given by equations (9), (17); it is a Fock one. To provideλn > 0 for n > 0 we have to
restrictB to lie in the interval

−16 B < −q + q
−1

q − q−1
. (27)

For B = −1 we again get a one-dimensional representation (19).

(b) λ0q
ν0 + 1

q − q−1
+ B

q + q−1
> 0. (28)

Equation (28) impliesλn > 0 for all n ∈ Z. The representation is given by equations (9),
(14) with n ∈ Z.

(c) λ0q
ν0 + 1

q − q−1
+ B

q + q−1
= 0. (29)

If

|B| < −q + q
−1

q − q−1

all λn > 0 and the representation has the same form as in (b). For

B = −q + q
−1

q − q−1

all λn with n even are vanishing; therefore, the representation is two dimensional and is
given by the formulae

a+90 =
√

2q−ν0−1

q−1− q91 a90 = 0

a+91 = 0 a91 =
√

2q−ν0−1

q−1− q90

N90 = ν090 N91 = (ν0+ 1)91

K90 = − q + q−1

2α
(
q − q−1

)90 K91 = q + q−1

2α
(
q − q−1

)91.

(30)

For

B = q + q−1

q − q−1

all λn with n odd vanish. The representation is two dimensional and is given by
equations (25).
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3. Discussion

Let us summarize the results obtained in section 2. Forq > 1 there are two possibilities:

(a) if B > −1 the spectrum ofN is bounded from below, and we have Fock
representation which is irreducible and determined by the choice ofν0 and B; different
choices correspond to inequivalent representations;

(b) if B = −1 we get a one-dimensional irreducible representation labelled by the values
of ν0; again different values ofν0 correspond to inequivalent representations.

The caseq < 1 is more involved. The following possibilities have to be distinguished:

(a) for

B <
q + q−1

q − q−1

we get irreducible anti-Fock representation; the representations are labelled by pairs(ν0, B)

and different choices correspond to inequivalent representations;
(b) for

B = q + q−1

q − q−1

one obtains two-dimensional representations parametrized byν0; different values ofν0

correspond to inequivalent representations;
(c) for B = −1 we again obtain a one-dimensional representation parametrized byν0;

it has the same form as forq > 1;
(d) for

−1< B < −q + q
−1

q − q−1

the representations are the Fock ones parametrized byν0 andB; for different values of these
parameters we obtain inequivalent representations;

(e) for

B = −q + q
−1

q − q−1

the representations, parametrized byν0, are two dimensional and mutually inequivalent;
(f) finally, there exists a set of infinite-dimensional representations for which the

spectrum ofN extends infinitely in both directions. They correspond to

|B| < −q + q
−1

q − q−1

and

λ0q
ν0 + 1

q − q−1
+ B

q + q−1
> 0

or

|B| = −q + q
−1

q − q−1
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and

λ0q
ν0 + 1

q − q−1
+ B

q + q−1
> 0.

It is easy to see that two such representations, labelled by(ν0, B, λ0) and (ν ′0, B
′, λ′0), are

equivalent iff

ν ′0 = ν0+ n B ′ = (−1)nB λ′0 = λ0q
n + q−ν0

(
qn − q−n
q − q−1

+ B q
n − (−1)nq−n

q + q−1

)
for some integern.

Let us now consider the limitsq → 1 or B → 0. It is easy to see that only the
one-dimensional and Fock representations survive the limitq → 1. On the other hand, the
B → 0 limit coincides with the results obtained in [16]. Finally, the limitq → 1, B → 0
leaves only the Fock representation as it should be. The results obtained are summarized
in table 1.

Table 1.

Type of Restrictions Restrictions q → 1 α→ 1
representation q on B on λ0 andν0 limit limit

One dimensional ArbitraryB = −1 λ0 = 0, ν0 arbitrary Exists Does not
exist

B = q+q−1

q−q−1 λ0 = 2q−ν0
q−1−q ,

ν0 arbitrary

Does not
exist

Does not
exist

Two dimensional q < 1

B = − q+q−1

q−q−1 λ0 = 0, ν0 arbitrary Does not
exist

Does not
exist

q > 1 B > −1 λ0 = 0, ν0 arbitrary Exists Exists
Fock

q < 1 − q+q−1

q−q−1 > B > −1 λ0 = 0, ν0 arbitrary Exists Exists

Anti-Fock q < 1 B <
q+q−1

q−q−1 λ0 = −qν0−1(1+ B),
ν0 arbitrary

Does not
exist

Does not
exist

|B| < − q+q−1

q−q−1 λ0q
ν0 + 1

q−q−1 + B

q+q−1 > 0 Does not
exist

Exists

Unbounded in
both directions

q < 1

 |B| = − q+q−1

q−q−1 λ0q
ν0 + 1

q−q−1 + B

q+q−1 > 0 Does not
exist

Does not
exist
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References
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